Lec02 Convex sets¶
1.Affine and Convex sets¶
Line:¶
all point x $$ x=\theta x_1+(1-\theta )x_2 $$
Line segment:¶
line that the
Affine set:¶
for any two distinct points in the set , exist a line. every affine set can be expressed as solution of system of linear equations.
Convex combination and convex hull¶
convex hull 仿射包,记为aff C。 仿射包是包含C的最小仿射集合,或者我们可以理解为壳。
仿射维数与相对内部¶
定义C的仿射维数为其仿射包的维数
相对内部与相对边界
Convex set:¶
for any two distinct points in the set ,exist a line setment.
Convex cone¶
conic combination 锥组合¶
with \(\theta_1\geq 0, \theta_2\geq 0\)
convex cone 凸锥¶
set that contains all conic combination of points in the set.
锥包¶
集合C的锥包为C中元素的所有锥组合的集合。
2.Some important examples¶
2.1Hyperplanes and Halfspaces¶
Hyperplane¶
set of the form \(\{x|a^Tx=b\}(a\neq 0)\)
Halfpspaces¶
set of the form \(\{x|a^Tx\leq b\}(a\neq 0)\)
- a is a normal vector
- hyperplanes are affine and convex; halfspaces are convex
2.2 Euclidean balls and Ellipsoids¶
(Euclidean) Ball¶
with center \(x_c\) and radius \(r\):
Ellipsoid:¶
set of the form:
with \(P ∈ S^n _{++}\)(i.e., P symmetric positive definite)
other representation: \(\{xc + Au | \ ||u||_2 ≤ 1\}\) with A square and nonsingular
2.3 Norm balls and norm cones¶
norm¶
a function ||·|| that satisfies
- \(||x||≥ 0;||x|| = 0\) if and only if \(x = 0\)
- \(||tx||= |t|||x||\) for \(t ∈ R\)
- \(||x+y|| ≤ ||x|| + ||y||\)
norm ball¶
with center \(x_c\) and radius r:
norm cone:¶
Euclidean norm cone is called secondorder cone
norm balls and cones are convex
2.4 Polyhedra 多面体¶
单纯形¶
Title
- Contents
2.5 Positive semidefinite cone¶
some notations
3.Operations that preserve convexity¶
3.1 intersection 交集¶
the intersection of (any number of) convex sets is conve
3.2 affine functions¶
Exmaple
- Scaling 放缩 Translation平移 Projection 投影
- 加法 直积 部分和
- 线性矩阵不等式的解是凸集
- 双曲锥是凸集
3.3 perspective and linear-fractional function¶
Perspective funtcion¶
\(P:R^{n+1}→R^n\)
images and inverse images of convex sets under perspective are convex. 这说明了domP 的子集C如果是凸集,那么他的象也是凸集。
透视函数可以理解为,规范化使得最后一维的分量为1,然后舍弃他。
Linear-fractional¶
\(f : R^n → R^m:\)
images and inverse images of convex sets under linear-fractional functions are convex
4.Generalized Inequalities¶
4.1Proper cone and generalized inequalities¶
proper cone¶
a convex cone K is a proper cone if
- K is closed
- K is solid
- K is pointed - which means K contains no line
generalized inequalities¶
suppose K is a proper cone,we define
to be more strict $$ x ≺_K y \iff y-x \in int K $$
Examples
- 非负象限及分量不等式
- 半正定锥及矩阵不等式
- [0.1]上的多项式锥
Properties
4.2 Minimum and minimal elements¶
minimum elements¶
\(x ∈ S\) is the minimum element of S with respect to \(≼_K\)if
minimal element¶
\(x ∈ S\) is a minimal element of S with respect to \(≼_K\) if
!!! Example 集合符号语言且建立在\(R_+^2\)上的一个例子 - 首先,用简单的集合符号我们可以让 \(x\in S\),目标是如何判断x是否是最小元/极小元。 - 1.如果 \(S\subseteq x+K\),那么x是最小元 - 2.如果 \((x-K)\cap S = \{x\}\),那么x是极小元 - 示意图如下 -
5.Separating and supporting hyperplane¶
5.1 Separating hyperplane theorem¶
if C and D are disjoint convex sets, then there exists \(a \neq 0\), b such that
then we can say the hyperplane \(\{x | a^T x = b\}\) separates C and D
question Deeper learning - 超平面分离定理的证明、严格分离、逆定理……
5.2 Supporting hyperplane theorem¶
hyperplane¶
suppose \(x_0\) is a point on the boundary of C,if for any \(x\in C\), $$ a^Tx\leq a^Tx_0 $$ then we can say hyperplane $$ {x|aTx=aTx_0} $$ is a supporting hyperplane of C at point \(x_0\)
Supporting hyperplane theorem¶
if C is convex, then there exists a supporting hyperplane at every boundary point of C
6. Dual cones and generalized inequalities¶
Dual cone \(K^*\)¶
Example
- \(K = R^n_+: K^∗ = R^n _+\)
\(K = S^n_+: K^∗ = S^n _+\) \(K = \{(x, t) | ||x||_2 ≤ t\}: K^∗ = \{(x, t) | ||x||_2 ≤ t\}\) \(K = \{(x, t) | ||x||_1 ≤ t\}: K^∗ = \{(x, t) | ||x||_∞ ≤ t\}\) - first three examples are self-dual cones
一些性质
- 对偶锥总是凸的,即使K不是凸锥
- 如果 \(K_1 \subseteq K_2\),那么 \(K_2^* \subseteq K_1^*\)
- 如果K有非空内部,那么\(K^*\) 是尖的
- 如果K 的闭包是尖的,那么\(K^*\) 必有非空内部
- \(K^{**}\) 是K的凸包的闭包,因此如果K是凸的且是闭的,那么\(K^{**}\) = K
- 这些最终说明了 如果K是一个proper cone 那么它的对偶锥也是,进一步有\(K^{**}\) = K
Dual generalized inequalities¶
Minimum and minimal elements via dual inequalities¶
mininum element¶
x is minimum element of S iff for all \(λ ≻_{K^∗} 0\), x is the unique minimizer of \(λ^T z\) over S
从几何上来看,这样意味着对于任意 \(λ ≻_{K^∗} 0\),超平面 \(\{z|\ \lambda ^T(z-x)=0\}\)是x在S的一个严格支撑超平面
minimal elements¶
if x minimizes \(λ^T z\) over S for some \(λ ≻_{K^∗} 0\), then x is minimal.