Skip to content

Lec02 Convex sets

1.Affine and Convex sets

Line:

all point x $$ x=\theta x_1+(1-\theta )x_2 $$

Line segment:

line that the

\[ 0 \leq \theta \leq1 \]

Affine set:

for any two distinct points in the set , exist a line. every affine set can be expressed as solution of system of linear equations.

Convex combination and convex hull

convex hull 仿射包,记为aff C。 仿射包是包含C的最小仿射集合,或者我们可以理解为壳。

仿射维数与相对内部

定义C的仿射维数为其仿射包的维数

相对内部与相对边界

Convex set:

for any two distinct points in the set ,exist a line setment.

Convex cone

conic combination 锥组合

\[ x=\theta_1x_1+\theta_2x_2 \]

with \(\theta_1\geq 0, \theta_2\geq 0\)

convex cone 凸锥

set that contains all conic combination of points in the set.

锥包

集合C的锥包为C中元素的所有锥组合的集合。


2.Some important examples

2.1Hyperplanes and Halfspaces

Hyperplane

set of the form \(\{x|a^Tx=b\}(a\neq 0)\)

Halfpspaces

set of the form \(\{x|a^Tx\leq b\}(a\neq 0)\)

  1. a is a normal vector
  2. hyperplanes are affine and convex; halfspaces are convex

2.2 Euclidean balls and Ellipsoids

(Euclidean) Ball

with center \(x_c\) and radius \(r\):

\[B(x_c, r) =\{x |\ ||x - x_c||_2 ≤ r\} = \{x_c + ru\ |\ ||u||_2 ≤ 1\}\]

Ellipsoid:

set of the form:

\[ \{x | (x - x_c)^T P^{ -1}(x - x_c) ≤ 1\} \]

with \(P ∈ S^n _{++}\)(i.e., P symmetric positive definite)

other representation: \(\{xc + Au | \ ||u||_2 ≤ 1\}\) with A square and nonsingular

2.3 Norm balls and norm cones

norm

a function ||·|| that satisfies

  1. \(||x||≥ 0;||x|| = 0\) if and only if \(x = 0\)
  2. \(||tx||= |t|||x||\) for \(t ∈ R\)
  3. \(||x+y|| ≤ ||x|| + ||y||\)

norm ball

with center \(x_c\) and radius r:

\[ \{x | ||x - x_c|| ≤ r\} \]

norm cone:

\[\{(x, t) | ||x|| ≤ t\}\subseteq R^{n+1}\]

Euclidean norm cone is called secondorder cone

norm balls and cones are convex

2.4 Polyhedra 多面体

单纯形

Title

  • Contents

2.5 Positive semidefinite cone

some notations


3.Operations that preserve convexity

3.1 intersection 交集

the intersection of (any number of) convex sets is conve

3.2 affine functions

Exmaple

  • Scaling 放缩 Translation平移 Projection 投影
  • 加法 直积 部分和
  • 线性矩阵不等式的解是凸集
  • 双曲锥是凸集

3.3 perspective and linear-fractional function

Perspective funtcion

\(P:R^{n+1}→R^n\)

\[P (x, t) = x/t, dom P = \{(x, t) | t > 0\}\]

images and inverse images of convex sets under perspective are convex. 这说明了domP 的子集C如果是凸集,那么他的象也是凸集。

透视函数可以理解为,规范化使得最后一维的分量为1,然后舍弃他。

Linear-fractional

\(f : R^n → R^m:\)

\[f(x) = \frac{Ax + b}{c^T x + d},\quad dom \ f = \{x | c^T x + d > 0\}\]

images and inverse images of convex sets under linear-fractional functions are convex


4.Generalized Inequalities

4.1Proper cone and generalized inequalities

proper cone

a convex cone K is a proper cone if

  1. K is closed
  2. K is solid
  3. K is pointed - which means K contains no line

generalized inequalities

suppose K is a proper cone,we define

\[ x ≼_K y \iff y-x \in K \]

to be more strict $$ x ≺_K y \iff y-x \in int K $$

Examples

  • 非负象限及分量不等式
  • 半正定锥及矩阵不等式
  • [0.1]上的多项式锥

Properties

4.2 Minimum and minimal elements

minimum elements

\(x ∈ S\) is the minimum element of S with respect to \(≼_K\)if

\[y ∈ S ⇒ x ≼_K y\]

minimal element

\(x ∈ S\) is a minimal element of S with respect to \(≼_K\) if

\[ y ∈ S, y ≼_K x ⇒ y = x \]

!!! Example 集合符号语言且建立在\(R_+^2\)上的一个例子 - 首先,用简单的集合符号我们可以让 \(x\in S\),目标是如何判断x是否是最小元/极小元。 - 1.如果 \(S\subseteq x+K\),那么x是最小元 - 2.如果 \((x-K)\cap S = \{x\}\),那么x是极小元 - 示意图如下 -


5.Separating and supporting hyperplane

5.1 Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists \(a \neq 0\), b such that

\[a^T x ≤ b \ for\ x ∈ C, a^T x ≥ b \ for\ x ∈ D\]

then we can say the hyperplane \(\{x | a^T x = b\}\) separates C and D

question Deeper learning - 超平面分离定理的证明、严格分离、逆定理……

5.2 Supporting hyperplane theorem

hyperplane

suppose \(x_0\) is a point on the boundary of C,if for any \(x\in C\), $$ a^Tx\leq a^Tx_0 $$ then we can say hyperplane $$ {x|aTx=aTx_0} $$ is a supporting hyperplane of C at point \(x_0\)

Supporting hyperplane theorem

if C is convex, then there exists a supporting hyperplane at every boundary point of C


6. Dual cones and generalized inequalities

Dual cone \(K^*\)

\[ K^*=\{y | y^T x ≥ 0 \ for \ all \ x ∈ K\} \]

Example

  • \(K = R^n_+: K^∗ = R^n _+\)

\(K = S^n_+: K^∗ = S^n _+\) \(K = \{(x, t) | ||x||_2 ≤ t\}: K^∗ = \{(x, t) | ||x||_2 ≤ t\}\) \(K = \{(x, t) | ||x||_1 ≤ t\}: K^∗ = \{(x, t) | ||x||_∞ ≤ t\}\) - first three examples are self-dual cones

一些性质

  • 对偶锥总是凸的,即使K不是凸锥
  • 如果 \(K_1 \subseteq K_2\),那么 \(K_2^* \subseteq K_1^*\)
  • 如果K有非空内部,那么\(K^*\) 是尖的
  • 如果K 的闭包是尖的,那么\(K^*\) 必有非空内部
  • \(K^{**}\) 是K的凸包的闭包,因此如果K是凸的且是闭的,那么\(K^{**}\) = K
  • 这些最终说明了 如果K是一个proper cone 那么它的对偶锥也是,进一步有\(K^{**}\) = K

Dual generalized inequalities

\[ y ≽_{K^*} 0 \iff y^T x ≥ 0 \ for\ all \ x ≽_K 0 \]

Minimum and minimal elements via dual inequalities

mininum element

x is minimum element of S iff for all \(λ ≻_{K^∗} 0\), x is the unique minimizer of \(λ^T z\) over S

从几何上来看,这样意味着对于任意 \(λ ≻_{K^∗} 0\),超平面 \(\{z|\ \lambda ^T(z-x)=0\}\)是x在S的一个严格支撑超平面

minimal elements

if x minimizes \(λ^T z\) over S for some \(λ ≻_{K^∗} 0\), then x is minimal.