Lec03 Convex Functions¶
1. Basic properties and examples¶
1.1 Definitiion¶
convex funtion¶
dom f is a convex set and
$$ f(θx + (1 - θ)y) ≤ θf(x) + (1 - θ)f(y) $$ for all \(x,y\in dom\ f ,0\leq \theta \leq 1\)
strictly convex funtion¶
dom f is a convex set and $$ f(θx + (1 - θ)y) ≤ θf(x) + (1 - θ)f(y) $$ for all \(x\neq y\in dom\ f ,0<\theta < 1\)
concave¶
凹
Examples on R
Examples on \(R^n\) and \(R^{m\times n}\)
一个判断法则
- 判断 \(f:R^n ->R\) 是否是凸的
- 只需判断函数 \(g:R->R\ g(t)=f(x+tv),\ dom g =\{ t| x+tv \in dom \ f \}\)是否是凸的。
- 举一个例子
1.2 Extended-value extension¶
we define \(\tilde{f}\) is the extension of f,we get
so we can extend the funtion to \(R^n\)
1.3 First-order condition¶
1.4 Second-order conditions¶
1.5 Epigraph and sublevel set¶
上境图和\(\alpha\)-下水平集
1.6 Jensen's inequality¶
basic inequality¶
if f is convex,then for \(0\leq \theta \leq 1\) $$ f(θx + (1 - θ)y) ≤ θf(x) + (1 - θ)f(y) $$
extension¶
if f is convex then, \(x_1,...,x_k \in dom \ f ,\theta_1,...,\theta_k\geq 0\),\(\theta_1+...+\theta_k=1\),则 $$ f(\theta_1x_1+···+\theta_kx_k)\leq \theta_1f(x_1)+...+\theta_kf(x_k) $$ 同理可以应用于积分 用概率来衡量,我们可以得到 $$ f(Ex)\leq Ef(x) $$
Holder不等式
- Contents
2. Operations that preserve convexity¶
- 非负加权求和(积分)
- 复合仿射映射 \(f(Ax+b)\) is convex if f is convex
- 逐点最大与逐点上确界
- 标量复合
- 矢量复合
- 最小化
- 透视函数
3.The conjugate function 共轭函数¶
conjugate function¶
不论f是否是凸函数,\(f^*\)均为凸函数。
4.Quasiconvex functions 拟凸函数¶
definition¶
如果所有的下 \(\alpha\) 水平集
都为凸集,那么为拟凸函数
properties¶
- modified Jensen inequality: for quasiconvex f $$ 0 ≤ θ ≤ 1 =⇒ f(θx + (1 - θ)y) ≤ max{f(x), f(y)} $$
- first-order condition: differentiable f with cvx domain is quasiconvex iff $$ f(y) ≤ f(x) =⇒ ∇f(x)^T (y - x) ≤ 0 $$
5.Log-concave and log-convex functions¶
log-concave¶
a positive function f is log-concave if log f is concave:
log-convex¶
f is log-convex if log f is convex