Skip to content

Lec04 Convex optimization problems

1.Optimization problem 优化问题

1.1Optimization problem in standard form

option value

\[p^*= inf\{f_0(x) | f_i(x) ≤ 0, i = 1, . . . , m, h_i(x) = 0, i = 1, . . . , p\}\]

如果问题不可行,取 p* 为 ∞

如果问题无下界,取 p* 为-∞

如果x可行且 \(f_i(x)=0\),我们称约束 \(f_i(x)\leq 0\) 的第i个不等式x处起作用

1.2 Optimal and locally optimal points

feasible

x is feasible if \(x ∈ dom f_0\) and it satisfies the constraints
a feasible x is optimal if \(f_0(x) = p^*\);\(X_{opt}\) is the set of optimal points

local optimal

x is local optimal if there is an R>0 such that x is optimal for

1.3 Implict constraints

we call the domain of the problem is


2.Convex optimization 凸优化

2.1 standard form convex optimization problem

important property:

  • feasible set of a convex optimization problem is convex

2.2 Local and global optima

In fact

  • any locally optimal point of a convex problem is (globally) optimal

2.3 Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

\[ ∇f_0(x)^T (y - x) ≥ 0 \]

2.4 Equivalent convex problems

Equivalent convex problems

introducing equality constraints

introducing slack variables for linear inequalities

epigraph form

minimizing over some variables(partial optimate)

2.5 Quasiconvex optimization

when the \(f_0\) is quaisconvex ,can have locally optimal points that are not globally optimal

solution


3. Linear program 线性规划问题

\[ minimize \ c^Tx+d \]
\[ subject \ to \ Gx≼ h \]
\[ Ax=b \]

feasible set is a polyhedron.

Linear-fractional program 线性分式规划问题


4.Quadratic program二次优化问题

QP

目标函数为凸二次型,且约束函数为仿射。

QCQP

不等式约束也是凸二次型,则是QCQP

Sencond-order cone programming (SOCP)


5.Geometric programming几何规划

monimal function and posyminal function

GP

GP一般来说都不是凸问题,在此情况下可以转化为凸优化问题

solution

\[ y_i=log\ x_i \]


6.Generalized inequality constraints广义不等式约束

convex problem with generalized inequality constraints

conic form problem

Semidefinite program (SDP)


7.Vector optimization向量优化

general and convex vector optimization problem